10 research outputs found

    Two modes of peri-interaction between an aldehyde group and a carboxylate anion in naphthalaldehydate salts

    Get PDF
    Crystal structures of the salts of 1,8-naphthalaldehydic acid (8-formyl-1-naphthoic acid) show one of two types of interaction between the functional groups. In the more commonly observed case, a carboxylate oxygen lies close to the aldehyde carbonyl carbon atom (O⋯C: 2.445–2.630 Å) and makes an n–pi* interaction. However, in two other cases the carboxylate group has rotated so that the aldehyde now directs its hydrogen atom at the face of the carboxylate group and forms a surprisingly short contact with the carbon atom (H⋯C: 2.29 and 2.42 Å). This interaction is likely to be electrostatic in nature

    Synthesis and Evaluation of a 2,11-Cembranoid-Inspired Library.

    Get PDF
    The 2,11-cembranoid family of natural products has been used as inspiration for the synthesis of a structurally simplified, functionally diverse library of octahydroisobenzofuran-based compounds designed to augment a typical medicinal chemistry library screen. Ring-closing metathesis, lactonisation and SmI2 -mediated methods were exemplified and applied to the installation of a third ring to mimic the nine-membered ring of the 2,11-cembranoids. The library was assessed for aqueous solubility and permeability, with a chemical-space analysis performed for comparison to the family of cembranoid natural products and a sample set of a screening library. Preliminary investigations in cancer cells showed that the simpler scaffolds could recapitulate the reported anti-migratory activity of the natural products

    Anion-induced shuttling of a naphthalimide triazolium rotaxane.

    No full text
    The anion-templated synthesis of a rotaxane structure, incorporating the new naphthalimide triazolium motif, is described and the interlocked host shown to exhibit selective, uni-directional, anion-induced shuttling. Initial pseudorotaxane investigations demonstrate the ability of a naphthalimide triazolium threading component to form interpenetrated assemblies with counter-anion-dependent co-conformations. (1)H NMR studies reveal that the shuttling behaviour of the analogous rotaxane host system is controlled by selective anion binding and by the nature of the solvent conditions. Complete macrocycle translocation only occurs upon the recognition of the smaller halide anions (chloride and bromide). The rotaxane solid-state crystal structure in the presence of chloride is in agreement with the solution-phase co-conformation. The sensitivity of the axle naphthalimide absorbance band to the position of the macrocycle component within the interlocked structure enabled the molecular motion to be observed by UV/Vis spectroscopy, and the chloride-induced shuttling of the rotaxane was reversed upon silver hexafluorophosphate addition
    corecore